The Route to Crisis: Cities, Trade, and Epidemics of the Roman Empire

Eriny Hanna
College of Arts and Science, Vanderbilt University

The goal of this paper is to provide a universal model that outlines the origins of disease contraction and transmission in the ancient Mediterranean world. While numerous scholars have written on the subject of epidemics and their effects on the Roman Empire, very limited studies focus on the general causes of epidemics throughout the Roman era. I propose that Roman culture, urbanism, and the interdependence between cities and provinces led to the entry and transmission of communicable diseases, contributing to conditions that ultimately caused the fall of the empire. I first discuss and describe the causal factors of epidemics. I start by presenting Roman ideologies as this will aid in the understanding of city structure. After a description of a typical city layout, I present the conditions which encouraged the spread of disease within cities. Cities and provinces were not in isolation, but rather part of a greater economic network. I, therefore, also describe the nature of trade routes and how trade impacted the global spread of pathogens. I conclude by applying the proposed theories to two plagues—the Antonine Plague and Justinianic Plague—from different, yet comparable, time periods. I also gauge the effects of disease on Roman economy, demography, and society by using these case studies.

Commemorated for its far-reaching conquests, bustling cities, and luxurious public monuments, the Roman Empire is hardly associated with disease by the modern observer. In reality, the ancient Roman world teemed with infection and disease as evidenced by studies in archeology, anthropology, economics, and ecology. Galen, the renowned physician of the second century, unearths the blatant, gory truth about the city of Rome, “[the] populous city, where daily ten thousand people can be discovered suffering from jaundice, and ten thousand from dropsy.”1 Epidemics were no different in their effect than jaundice and dropsy. Donald J. Hughes, supported by other scholars as William McNeill, proposes that the Justinianic Plague alone was the cause of death for half of the people living in the Mediterranean world in the sixth century.2 Thus, the importance of acknowledging the presence of epidemics in the Roman Empire cannot be ignored.

The goal of this paper is to provide a universal model that outlines the origins of disease contraction and transmission in the ancient Mediterranean world. While numerous scholars have written on the subject of epidemics and their effects on the Roman Empire, very limited studies focus on the general causes of epidemics throughout the Roman era. I propose that Roman culture, urbanism, and the interdependence between cities and provinces led to the entry and transmission of communicable diseases, contributing to conditions that ultimately caused the fall of the empire. I first discuss and describe the causal factors of epidemics. I start by presenting Roman ideologies as this will aid in the understanding of city structure. After a description of a typical city layout, I present the conditions which encouraged the spread of disease within cities. Cities and provinces were not in isolation, but rather part of a greater economic network. I, therefore, also describe the nature of trade routes and how trade impacted the global spread of pathogens. I conclude by applying the proposed theories to two plagues—the Antonine Plague and Justinianic Plague—from different, yet comparable, time periods. I also gauge the effects of disease on Roman economy, demography, and society by using these case studies.

Most evidence presented here originates from modern archaeological and economic studies on the ancient world. I utilize virtual renditions of the city of Rome and trade routes to vividly illustrate the design of the empire. Whenever possible, I use direct literary recordings to enhance my argument. Such primary sources, however, are seldom and fail to provide a complete portrayal of ancient conditions. Scholars attempt to fill in gaps of history based on modern patterns. But inferences may be faulty, leaving us with limited knowledge of the past. I clearly note these limitations and shortcomings throughout this study.

1 Quoted in Walter Scheidel, “Disease and Death in the Ancient City of Rome” (2009), 7.
ROMAN URBANISM AND CITY CONDITIONS

In a general sense, a city is a congregation of people occupying a single space containing public architecture and monuments as well as private residences characteristic of the values and culture of the inhabitants. In the Roman sense, the city is a “symbol of prosperity and civilized culture”; a place for thought, reasoning, and sharing ideas; an elite storehouse of commodities, entertainment, and scholarship. The city, with its administration, structure, and culture garnered for the Romans, more specifically for the elite members of society, an identity and a “sense of place.” The city was not a mere conglomeration of citizens, but rather a set of opportunities which collectively created an “urban way of life” as Ray Laurence and associates term the phenomenon of Roman cities. Cities were nuclei for human survival and living.

Because of this reverence for the city, Roman and Byzantine emperors frequently endorsed the emergence of cities in new territories. Augustus (r. BC 27 – AD 14), the first emperor of Rome, asserts with pride, “I found Rome a city of bricks and left it a city of marble.” From its very start, the Roman Empire focused on building and fortifying cities. Augustus focused on expansion of the Roman Empire, annexing provinces including Egypt in the East and Dalmatia in the North. Cities in these provinces, such as Alexandria, were modified to fit Roman standards and to serve Roman political and economic functions. Even Hadrian (r. AD 117-138), who choose to avoid war, directed the empire’s resources to strengthening and Romanizing cities. The strong focus on cities was well preserved in the Byzantine era. Procopius, a historian for Emperor Justinian (r. 527 -565), praises a conquered land for their progress in forming a city:

The city thus became the hallmark of the Roman world for centuries. And while each city preserved traces of its folk culture, cities of the empire shared several characteristics that encouraged the spread of disease.

The layout of cities was designed for close interaction reflecting the Roman ideologies of civilized culture. As Paul Erdkamp clearly delineates, “cities had to be built around public monuments” to encourage assemblies and councils. While the advancement of civilization was made possible by the city structure, the concentration of civilians in a single locus welcomed infection and disease. Bernard Frischer’s virtual rendition of the city of Rome illustrates the tight conglomerations of houses concentrated at the center of the city. According to his model, the radius of the heart of Rome was no more than ten kilometers, yet up to a million persons were considered citizens of Rome at the plateau of its power in the second century AD just before the Antonine Plague. While it is true that only the main cities—such as Rome and Alexandria in the Roman Empire, Carthage in the Byzantine Empire—had populations above 100,000, land area generally correlated positively with population size. Furthermore, although the majority of citizens resided in the countryside, a great

6 A deeper discussion of similarities and differences between the Roman and Byzantine era is beyond the scope of this paper. Major cities shared common characteristics. For more information, see Kenneth G. Holm, “The Classical City in the Sixth Century,” The Cambridge Companion to the Age of Justinian, edited by Michael Maas (Cambridge: Cambridge University Press, 2005), 87-112.
number of them traveled to nearby cities daily to conduct business and trade. Farmers of the hinterland would often leave their lands for easy labor jobs in the city and at least twenty percent of citizens permanently remained in the city. Ultimately, high population density characteristic of Roman cities coupled with close interaction caused “unsanitary practices and infection” in both the city and the countryside. Cassius Dio records 2,000 deaths per day in Rome during a resurgence of the Antonine Plague. This number cannot be attributed to any other factor but high population density.

Overpopulation and overcrowding caused other issues. Malnutrition was common among the urban poor and rural peasants causing an increased risk for disease contraction due to compromised health. The Roman diet for laborers consisted mainly of wheat, as opposed to the elite who feasted on fruits, vegetables, wine, cheeses, and even meat. Scheidel estimates that the caloric intake of Roman Egypt prior to the Antonine Plague could in no way be above a thousand calories. Approximately ninety-five percent of Roman citizens lived in poverty. In such conditions of scarce resources, the body focuses metabolism on survival over growth and height. An ongoing study by Geertje Klein-Goldewijk measures leg bone lengths from 10,000 skeletons from various locations in the Roman Empire. Using an enhanced formula to compare femur length with probable height, she found a common trend in decreased stature from the onset of the Roman age until the fourth century AD. Scheidel attributes this pattern to the “Malthusian scenario of diminishing wellbeing” because of the rise in population. Scheidel supports his case by referencing another study of over a thousand skeletons from seventy ancient sites in central Italy. This study, by Monica Giannecchini, concludes diminished stature compared to remains from both the Iron Age and the Middle Ages. Diminished immunity surely triggered infection in individuals, but sanitary conditions led to disease transmission on the scale of entire cities.

A common and prevalent problem in the city was the abundance of waste and sewage. No clear system existed for clearing waste causing citizens to throw their garbage in the nearest convenient ditch despite legislation prescribing punishment for such behavior. Julius Caesar, the last ruler of the Roman Republic, commanded street cleaning by every citizen. As we shall see in the case of the Justinianic Plague, foul street conditions invited pathogen-carrying vermin. In Rome, untreated sewage flowed through sewers into the Tiber River. Citizens disposed all kinds of rubbish into the river including “stale grain and bodies that had been denied burial.” Sanitary efforts contributed little to ameliorate the situation. Technological solutions seem to have improved the quality of life, but a closer observation reveals issues with the advancements. Aqueducts poured out into public basins and fountains which residents would pollute while obtaining large amounts of water at a time. Bacterial growth was not uncommon in the water lying stagnant in pottery that would be used for basic necessities.

While I only provide explanations on malnutrition and poor sanitation, other issues, including deforestation and pollution along with their consequences, contributed significantly to outbreaks. The provided examples, however, clearly delineate how overpopulation led to a demand for resources that nature could not provide, supporting pathogen growth and proliferation. Without doubt, city structure led to deleterious living conditions and the exacerbation of epidemics. Until now, I have focused on the city as a sole entity. Yet, cities functioned as “nodes of wider networks.” The Roman Empire, in essence, was a highly interconnected web of cities and provinces, making possible the wide-scale transmission of contagion.

Roman Demand and Interdependence

Cities enabled a division of labor. All types of trades and specialties were made possible by the gathering of peoples. In the sixth century, grave inscriptions

12 Erdkamp, 246.
13 Hughes, 162.
14 Scheidel, “Disease and Death in the Ancient City of Rome,” 7-8.
17 Linda Giante, “Death and Disease in Ancient Rome.”
21 Hughes, 162.
22 Ibid, 163. Hughes’ sources all come from ancient historians.
Commodities were an important source of Rome’s grain. Trade toward the third and fourth centuries shifted more toward satisfying the desire for luxury and commodities in cities. Andrew Wilson cites recent archaeological work in Western India and Red Sea ports as evidence of a thriving and intensive trade between Roman Egypt, the Arabian Peninsula, and India. Egypt “exported gold, wine, and fish products, and imported spices, cotton textiles, pearls, and sea turtle shells” which it transported to the rest of the Mediterranean world. Commodities were available to all social levels, thus enabling the spread of disease from foreign lands to enter and infest the Roman world.

Resulting from the high demand for grain and commodities was a high interdependence between cities to provide each other essential and even extemporaneous resources. Figure 2, obtained from the ORBIS program, reveals the tight interconnections between more than three hundred cities. The path from Alexandria to Egypt takes twenty days in the warm seasons and a little over a month in the winter. This time range is well within the life span of pests and rodents who often took advantage of wheat- and fruit-filled cargo ships to sail to new areas within the empire.

Case Studies

The case studies presented below serve as models by which to understand how ancient urban structure and interdependence caused the entrance and widespread transmission of epidemics in the empire. A discussion on the impact of each plague will follow. The Antonine Plague struck the Roman Empire at the height of its glory during the second century AD, providing an exceptional model to observe the extent of damage brought about by an epidemic. The Justinianic Plague, although occurring in the Byzantine era, complements the Antonine Plague by providing a fuller illustration of disease transmission. The Byzantine age is marked by a time of considerable shift in politics and religion. The economic system and urban structure, however, remained largely unchanged from the previous centuries. The Justinianic Plague should therefore serve as a valid example for the factors aforemen-

25 Erdkamp, 248.
27 Natural History 14.3 quoted in Kron, 157.
29 Erdkamp, 255&261.
30 Fulford, 66-67.
32 Ibid, 288.
Scheidel also admits that prices—This observation is supported by Fulford's study.Because of the high population density of the region at large. Instead, Scheidel uses compelling economical evidence to demonstrate the effects of the Antonine more accurately.

Figure 3 is a graph compiled by Scheidel on Ancient Egyptian price and rent fluctuations presumably caused by the plague. The AD 100-160 range is what Scheidel considers to be the pre-plague period, and 190-260 is termed post-plague. Scheidel argues that these values are determined by and directly reflect supply and demand within Egypt, although wheat prices probably also reflected outside demand.

His data are compelling. Generally, an increase in prices denotes an increase in demand, while a decrease represents lower demand. The price, and thus demand, for wine and oil, common commodities in the Roman world, decreased; oil less so probably due to its greater necessity. Wheat prices showed no change due to severe poverty, famine, and lack of other foodstuffs. Hughes attributes the 1.5 increase in donkey values to the diminished labor of farmers who were infected and eventually died. Roger Bagnall also suggests that villagers “simply went elsewhere, to villages where they were not registered and would…not face the same pressures.” Because of the decrease in population, land prices and rents for agricultural tools decreased between twenty-five to fifty percent. Resulting was a noticeable increase in monthly wages for farmers. Considering the high population density of the ancient world prior to the plague and the referenced data, the plague actually helped to relieve some of the stress on the land and natural resources. Yet, since most villagers actually traveled elsewhere, the stress would have been placed on the resources of that area—something Scheidel neglects to consider. Scheidel does take caution in assuming that wellbeing was enhanced. Disagreeing with Willem Jongman and Geoffrey Kron, he states that archeological evidence point to a low quality of life that did not improve after the plague. Nor would wellbeing have mattered in the face of a plague attacking a densely populated city. Scheidel also admits that prices in Egypt “never returned to pre-plague levels” implying an increased labor on farmers and a decreased land yield.

Scheidel is adamant that “all factors moved in the predicted direction.” The rise in labor costs and decrease in prices of goods imply a considerable decrease in population. Skeptics of this model state that Scheidel often overlooks critical data such as the P. Oxy. 66,4527 document on wheat taxes which suggest opposite trends at least for wheat—much less was transported to the capital for taxes. This observation is supported by Fulford’s studies on trade patterns that suggest less of a dependence on

34 See footnote 8 for more information on the Byzantine Empire.
38 Duncan-Jones, 136.
40 Scheidel standardized pre-plague values to 100 for easy and fair comparison.
This promoted ideology that necessitated the import of commodities from around the world, as discussed above. Historians attribute the demand for trade as an entry way for *Y. pestis* upon the unintentional introduction of the black rat. Black pepper was produced in India then transported across the Indian Ocean to the Red Sea Egyptian port of Quseir el Qadim as shown in Figure 4. From this port, the goods traveled across the Eastern Desert to ports on the Nile River from which they were conveyed downstream to Alexandria for shipment over the Mediterranean Sea. Chromosomal and literary evidence indicate that *Rattus rattus*, entered the Roman world by way of Egypt, undoubtedly on board the ships carrying pepper. The rodent then rapidly spread throughout the empire by means of other trade routes, some which led as far North as Vindolanda in Britain.

Taking advantage of crowded urban conditions and unlimited food resources, the black rat species flourished in the empire. Thus, tracing the movement of the rodents enables us to determine the rate and extent of the plague’s transmission. The rats themselves could travel no more than two-hundred meters in a lifetime, meaning only a few kilometers of natural migration per century. This indicates that the spread of the rodents within cities and to other providences can be attributed mainly to human movement. About eighty percent of Roman rat finds, from archeological evidence of predator remains and furrows, occur near coasts or river banks. Rats commonly invaded ports to establish their colonies especially due to the rich resources of grain and corn found on cargo ships. Inland routes were also common travel routes for the rodents, bacteria in their bloodstream which is quickly transmitted to human populations upon which they depend for food and waste. Swelling and pain would ensue upon infection and often led to death in less than a week. Even after afflicting the empire for more than two centuries, the plague always reappeared in bursts until its final eruption in the Middle Ages, sweeping much of the European population. The death toll in the Byzantine era was no different.

The term for this plague, rightfully so, arose from the name of Emperor Justinian, who himself contracted the disease. Justinian was known for his attempts to reconquer the western part of the empire and to restore the luxurious days of the Roman city. This promoted ideologies that necessitated the import of commodities from around the world, as discussed above. Historians attribute the demand for trade as an entry way for *Y. pestis* upon the unintentional introduction of the black rat. Black pepper was produced in India then transported across the Indian Ocean to the Red Sea Egyptian port of Quseir el Qadim as shown in Figure 4. From this port, the goods traveled across the Eastern Desert to ports on the Nile River from which they were conveyed downstream to Alexandria for shipment over the Mediterranean Sea. Chromosomal and literary evidence indicate that *Rattus rattus*, entered the Roman world by way of Egypt, undoubtedly on board the ships carrying pepper. The rodent then rapidly spread throughout the empire by means of other trade routes, some which led as far North as Vindolanda in Britain.

Taking advantage of crowded urban conditions and unlimited food resources, the black rat species flourished in the empire. Thus, tracing the movement of the rodents enables us to determine the rate and extent of the plague’s transmission. The rats themselves could travel no more than two-hundred meters in a lifetime, meaning only a few kilometers of natural migration per century. This indicates that the spread of the rodents within cities and to other providences can be attributed mainly to human movement. About eighty percent of Roman rat finds, from archeological evidence of predator remains and furrows, occur near coasts or river banks. Rats commonly invaded ports to establish their colonies especially due to the rich resources of grain and corn found on cargo ships. Inland routes were also common travel routes for the rodents, bacteria in their bloodstream which is quickly transmitted to human populations upon which they depend for food and waste. Swelling and pain would ensue upon infection and often led to death in less than a week. Even after afflicting the empire for more than two centuries, the plague always reappeared in bursts until its final eruption in the Middle Ages, sweeping much of the European population. The death toll in the Byzantine era was no different.

The justinianic plague, the plague of rodents

The Justinianic plague, accessing the empire by way of Egypt in the summer of AD 541, was the first of many outbreaks of the Bubonic Plague to have infected Europe. This infection is caused by contact with rodents carrying the bacteria *Yersinia pestis* and particularly through bites from fleas that previously bit infected rodents. Rats, and especially the black rat (*Rattus rattus*), have the inherent ability to store highly concentrated

47 Fulford, 68.
48 Bagnall, 119.
49 Scheidel and Southerland, 23.
50 Duncan-Jones, 124-130.

53 Erdkamp, 241.
54 Wilson, 290.
55 McCormick, 7.
56 Ibid, 16.
57 Ibid, 10.
who thereby infested the countryside. They preferred cart roads, common routes for grain, compared to lesser untrodden roadways. 58 Without doubt, the strong interconnection between regions of the Roman Empire exacerbated the spread of disease-causing vermin.

While trade and interconnection may explain the wide spread of the disease, negative human impact on the natural environment also contributed significantly to the severity of the plague. The clearing of forests for city expansion and human use caused the decline of several predators to the rats. Owls, foxes and weasels all were forced out from their natural habitat. The food chain was disrupted promoting increase in population sizes of *Ratus ratus*. 59 Hughes further argues that the direct impact of overpopulation engendered fluctuations in climate. 60 The direct human effect is somewhat debated by other scholars, but records certainly indicate cycles of heavy precipitation followed by drought occurring during the years of the Justinianic plague. During the heavy rain period, rodents would increase in population based on the increase in food resources and would then scatter abroad in search of resources in drought. Even in times of scarcity, cities provided rats with a wealth of waste tucked away in trenches in close proximity to houses and businesses. 61 These three examples attest to the detrimental effects of overpopulation and high demand.

Evidence is lacking to determine specific short term impacts of the plague, but is assumed to have afflicted the empire in a similar pattern as Antonine Plague. In his somewhat contested book entitled *Justinian’s Flea*, William Rosen attributes the transition into the Middle Ages to the Justinianic plague:

The most long-lasting effect of the plague was not its initial impact, but the way in which its aftershocks remade the topography of Europe and the Mediterranean. As the demon washed across the lands once ruled by Rome, it left behind tidal pools: the distinctive regions in which protonations like the Franks, Lombards, Saxons, Slavs, and Goths could coalesce and combine into polities called France, Spain, and England. 62

Rosen may not be considering all aspects of the fall of the Roman Empire, but he brings our attention to the importance of considering long term effects of plague. The decline and fall of the Roman Empire cannot be completely attributed to the frequency of plagues. Yet, scholars cannot deny the pivotal role disease played on weakening the mighty empire.

Concluding Thoughts

All in all, this study attempts to provide a general paradigm for how epidemics were introduced and spread in the ancient world. Although the lack of evidence from the Roman Age forced scholars to make inferences in their research, modern epidemiological trends support the general framework of my argument. Many problems in history undoubtedly recur in the present. As such, this study begs the question, considering the current global interdependence, whether the present age would be able to withstand a pandemic. We have seen just how rapidly the H1N1 and Ebola viruses spread by way of transportation modes and close interactions within cities despite initial scientific and governmental efforts. An analysis of ancient epidemics may not provide direct solutions, but invites the modern society to consider its susceptibility to infection. As a united human race, we should not underestimate the dangers of epidemics and work in unison to prevent such catastrophes from occurring.

References

Giante, Linda. “Death and Disease in Ancinet Rome.”

Figure 1. Virtual Rendition of Rome. (Bernard Frisher, Rome Reborn.)

Figure 2. Trade Routes in the Roman Empire. Brown routes represent roadways, blue and green routes are water routes, red route represents fastest path from Alexandria to Egypt. (Walter Scheidel, Orbis.)
Figure 1 Changes in real prices and rents between 100-160s and 190s-260s CE

Figure 3. Data on Pre- to Post- Antonine Plague Prices and Rents in Roman Egypt. (Walter Scheidel, “A Model of Demographic and Economic Change in Roman Egypt after the Antonine Plague.”)

Figure 4. Trade Route from India (not shown) to Quseir al Qadim and Other Red Sea Ports to Alexandria. Black lines indicate travel by road, blue lines indicate travel along the Nile River. (The Red Sea Governate, redsea.gov.eg.)